sfl logo
University of Toronto Institute for Aerospace Studies
Space flight laboratory
Smaller Satellites, Bigger Return

BRITE-Constellation Sees Stars in a New Light

crux centauriVienna, Austria – The first scientific paper produced using data collected by the nanosatellites forming the BRITE-Constellation (BRIght Target Explorer), to be published in an upcoming issue of the journal Astronomy & Astrophysics, is revealing new information about a well-studied star, Alpha Circini.

“Our analysis of the BRITE data revealed behaviour in this star that has not been observed before,” said Professor Werner Weiss from the University of Vienna, Austrian Principal Investigator for BRITE and lead author of the paper. “BRITE-Constellation showed complex behaviour in Alpha Cir due to both rotation and pulsation. Moreover, that behaviour is different when observed in different colours. This result clearly demonstrates the power of BRITE-Constellation and the unique science that is possible using these tiny two-colour precision instruments in space.”

Referring to the fact that each seven kilogram BRITE satellite is tuned either for the blue end of the visible spectrum or the red, Prof. Weiss highlights the feature that makes the BRITE data so valuable to astronomers; it is multi-coloured.

“For stars, colour and temperature go hand-in-hand. Having the ability to examine stars in different colours with data taken every few minutes for up to six months is providing new insights into their inner workings,” explains Prof. Weiss.

Using these precision instruments, BRITE-Constellation’s mission is to perform a survey of the most luminous stars in the Earth’s sky via a branch of astronomy called asteroseismology – literally, the study of “starquakes”. Typically massive and short-lived, these stars dominate the ecology of the Universe and are responsible for seeding the interstellar medium with the “heavy” elements critical for the formation of planetary systems and organic life. In short, BRITE studies classes of stars that, billions of years ago, made life on Earth possible.

With an apparent magnitude of 3.19, Alpha Cir is the brightest star in the southern constellation Circinus and belongs to the class of stars known as rapidly oscillating Ap stars. The star in question was observed by four of the BRITE satellites from March to August 2014 and will be observed again in 2016. It is hoped that these new observations will provide both a better understanding of its complex behaviour and a chance to confirm a new oddity about this already peculiar star; that its speed of rotation is decelerating.

Circinus IAU

The nanosatellites making up BRITE-Constellation were designed by the Space Flight Laboratory at the University of Toronto Institute for Aerospace Studies (UTIAS-SFL) of Canada. Each of three countries, Austria, Poland, and Canada, funded two satellites and the science team counts among its membership several other nations.

“BRITE-Constellation is, to our knowledge, the world’s first space astronomy constellation,” notes Dr. Robert E. Zee, Director of the Space Flight Laboratory, “it serves as an excellent example of what SFL engineering can deliver in smaller satellites. In the case of BRITE, SFL satellites are delivering breakthrough scientific discoveries for the benefit of humankind. Each BRITE satellite, at only seven kilograms, packs a powerhouse of capability that is both unexpected and revolutionary for its size.”

Though scientific data have been collected by BRITE for almost two and a half years, a backlog of data from well in excess of 200 stars has accumulated while the pipeline for processing and distributing the vast quantities of data was being perfected. With that pipeline now in place, the Alpha Cir paper represents the first in what is likely to be a flood of scientific papers from BRITE data in 2016, and for years to come. In fact, two other exciting papers have already been accepted for publication.

The first paper, authored by Dr. Dietrich Baade of the European Southern Observatory, describes the discovery of pulsation-driven mass transfer from the massive star Eta Centauri to a complex and ever-changing gaseous disc surrounding it. Due to the subtle nature of the variability induced by this complex clockwork, detecting it from the ground was, and remains, nearly impossible. “Seeing such a complicated interplay between Eta Cen and its immediate environment with BRITE was a most unexpected eye opener,” reports Dr. Baade.

Because of the wide field of view of BRITE’s telescopes (40 times the diameter of the full moon) Eta Centauri was only one of about 30 targets observed simultaneously in the constellation Centaurus. Using one of those targets, the second forthcoming paper accurately determined the masses of stars in the triple star system Beta Centauri. That study, carried out by Dr. Andrzej Pigulski of Wrocław University in Poland, is revealing the enormous potential of BRITE data by uncovering very rich pulsations which will help to enhance the understanding of stellar structure and evolution.

“BRITE is in a class of its own when comparing performance and scientific return to cost and size,” said Cordell Grant who oversaw the design and construction of the satellites and now manages their operation. “It’s fantastic to see science results and new discoveries begin to flow from this unique mission. With the huge backlog of data already being studied on the ground and with the capabilities of the constellation expanding all the time, it’s exciting to think about the discoveries that are just waiting to be uncovered.”

The Alpha Cir paper can be found here.

alfpha cyrcini

LATEST NEWS

BRITE Reveals Spots on Supergiant Star Drive Spirals in Stellar Wind
Oct 24 2017
CLARA on NorSat-1 Successfully Switched on for the First Time
Aug 25 2017
Norwegian Satellites Launched Successfully and Healthy
Jul 14 2017
GHGSat Unveils Satellite Imagery
May 23 2017
Dubai Space Centre Orders Environmental Monitoring Satellite from SFL
May 16 2017
After Only One Week, CanX-7 Shows Drag Sails are Effective at Deorbiting Satellite
May 11 2017
CanX-7 Successfully Deploys Drag Sails kicking off Deorbiting Demonstration
May 04 2017
GHGSat Announces 1000th Measurement – Two Months Ahead of Schedule
Apr 07 2017
Space Flight Laboratory (SFL) Nanosatellite Validates Aircraft Tracking, Prepares for Deorbit Demo
Mar 30 2017
Space Flight Laboratory (SFL) to Develop Microsatellites for Greenhouse Gas Monitoring
Mar 24 2017
CanX-7 Aircraft Tracking and Deorbiting Demo Satellite Launched, Contacted, and Healthy
Sep 26 2016
GHGSat-D (CLAIRE) Bus Commissioning Ahead of Schedule
Jun 27 2016
M3MSat Launched and Successfully Contacted
Jun 22 2016
GHGSat-D (CLAIRE) Launches Successfully and First Contact Indicates Good Health
Jun 22 2016
Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission
May 26 2016
Space Flight Laboratory (SFL) to Provide LEO Bus to SSL
May 10 2016
NORSAT-1 Launch Postponed Due to Faulty Bracket Provided by Arianespace
Apr 14 2016
BRITE-Constellation Sees Stars in a New Light
Feb 05 2016
Deep Space Industries Teams with UTIAS Space Flight Laboratory to Demonstrate Autonomous Spacecraft Maneuvering
Jan 26 2016
exactView-9 Launched Successfully and Contacted
Sep 28 2015
SFL’s Josh Newman Wins 1st Place in Small Satellite Student Competition for CanX-4 and CanX-5 Formation Flying Mission Contribution
Aug 12 2015
NORSAT-2 Contract Awarded to SFL by Norwegian Space Centre
Jul 13 2015
CanX-4&5 Formation Flying Mission Accomplished
Nov 05 2014
CanX-4 & CanX-5 Formation Flying Mission, One Month in Space
Jul 30 2014
Space Flight Laboratory Launches Five Satellites in Two Weeks
Jul 08 2014
AISSat-2 Successfully Launched
Jul 08 2014
Update on BRITE-Toronto and BRITE-Montreal
Jul 03 2014
Indian rocket successfully launches two Canadian satellites
Jun 30 2014
Two low-cost, car battery-sized Canadian space telescopes launched today
Jun 19 2014
UniBRITE and BRITE-Austria Commissioned and Operating Successfully
Feb 25 2014
Canadian Space Agency Awards Propulsion System Development Contract to SFL
Dec 02 2013
BRITE-PL1, WNISat-1, and GOMX-1 Launch Successfully
Nov 21 2013
Norwegian Space Centre Awards AISSat-3 Project to SFL
Jul 08 2013
SFL Wins Contract for First Norwegian Science Satellite – NORSAT-1
Jun 14 2013
UniBRITE Achieves Arcminute-Level Fine Pointing for First of its Kind Space Astronomy Mission
Jun 09 2013
Greenhouse Gas Monitoring Demonstration Satellite Contract Awarded
May 01 2013
Next Generation Automatic Identification System Satellites to be Developed under Communitech Program
Apr 19 2013
World's Smallest Astronomy Satellites In Orbit! (Toronto Star Article)
Feb 25 2013
Austrian BRITE Satellites Launched Successfully and Healthy! (Globe and Mail article)
Feb 25 2013
Microsatellite Science and Technology Centre (MSTC) Opens its Doors to the World
May 25 2012
Canadian Space Agency Awards Micro-mission Cluster Pilots Project to SFL
Mar 28 2012
SPACE-SI Awards NEMO-HD Contract to SFL
Dec 22 2011
Canada adds two satellites to BRITE Constellation
Jan 19 2011
AISSat-1 celebrates six months of success on-orbit, first nanosatellite with high performance pointing
Jan 12 2011
Norway signs AISSat-2 deal
Jan 06 2011
New Microsatellite Science and Technology Center (MSTC) planned for completion in late 2011
Dec 15 2010
CanX-7 Deorbiting Demonstration Mission Awarded Funding
Oct 28 2010
SFL-Built AISSat-1 Reaches Orbit and Confirmed Healthy
Jul 12 2010
CanX-2 Team wins the 2010 CASI Alouette Award
May 04 2010
UTIAS-SFL Trailblazing Small Satellite Technology (Space News)
Apr 20 2009
View All News Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.