CanX-3 / BRITE-Constellation: Mission

By Prof. Anthony Moffat, Canadian Principal Investigator, BRITE-Constellation
briteFamily

Luminous stars dominate the ecology of the Universe. During their relatively brief lives, massive luminous stars gradually eject enriched gas into the interstellar medium, adding heavy elements critical to the formation of future stars, terrestrial planets and organics. In their spectacular deaths as supernova explosions, massive stars violently inject even more crucial ingredients into the mix. The first generation of massive stars in the history of the Universe may have laid the imprint for all future stellar history. Yet, massive stars – rapidly spinning and with radiation fields whose pressure resists gravity itself – are arguably the least understood, despite being the brightest members of the familiar constellations of the night sky. Other less-massive stars also contribute to the ecology of the Universe only at the end of their lives, when they brighten by factors of a thousand and shed off their tenuous outer layers.

BRITE-CA

canx-3BRITEpatch

A group of 7-kg, 20x20x20cm nanosatellites in space, called BRITE (BRIght Target Explorer) Constellation, will capture the light shed by luminous stars and in turn shed light on their structures and histories, uncovering unique clues to the origins of our own Sun and Earth. The BRITE Constellation will be a cost-effective fleet of six nanosatellites based on pioneering Canadian space technology developed at SFL, built in partnership with Austrian and Polish space scientists. The BRITE nanosats will survey the sky, measuring the brightness and temperature variations of the brightest stars on timescales ranging from hours to months. The photometric data of luminous stars will provide time series with unprecedented accuracy that cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere. BRITE Constellation will investigate the role stellar winds play in setting up future stellar life cycles, and reveal pulsations that will allow astronomers to probe luminous star histories and ages through asteroseismology.

Each BRITE nanosat will carry a telescope and detector with a large field of view (~24 degrees across) that can monitor multiple target stars, so that differential photometry can be obtained both in brightness and color with precision better than 0.1% for a single observation. The Constellation of BRITE nanosats offers an order-of-magnitude improvement in science return over a single nanosat, since it allows the use of two different filters and provides superior time and sky coverage.

BRITE Constellation will also be able to collect this quality of data on a wide variety of other bright star types and phenomena. For example, the detection of exoplanetary transits around other stars will put our own planetary system in context, and the pulsations of red giants will test and refine models of the eventual fate of the Sun.

BRITE Constellation will be the first network of satellites devoted to a fundamental problem in astrophysics, extending and supplementing the spectacular success of the Canadian MOST microsatellite into the domain of nanosats and providing on-orbit experience for future coordinated satellite networks. BRITE Constellation will exploit and enhance recent Canadian advances in precise attitude control that have opened up for space science the domain of very low cost, miniature spacecraft, allowing a scientific return that otherwise would have had price tags 10 to 100 times higher.

canx3-labeled

LATEST NEWS & BLOGS

Space Flight Laboratory (SFL) Awarded Development and Production Support Contract for 15 Additional HawkEye 360 Radio Frequency Geolocation Microsatellites Flex Production Underway
Nov 15 2022
Space Flight Laboratory (SFL) Completes On-Orbit Commissioning of HawkEye 360 Clusters 4 and 5 Microsatellites
Oct 11 2022
Space Flight Laboratory (SFL) Nears Completion of GHGSat Greenhouse Gas Monitoring Constellation Core Satellites
Sep 19 2022
GHGSat doubles capacity in record time following launch and operationalization of three new satellites
Aug 11 2022
Space Flight Laboratory Announces Successful Deorbiting of Nanosatellite with Drag Sail Technology. Sails Reduced Time as Space Debris by 178 Years
Jun 13 2022
Six Microsatellites Built by Space Flight Laboratory (SFL) of Toronto Launched Aboard SpaceX Transporter-5 Mission - 36 SFL-Built Satellites Launched in Past Two Years
Jun 02 2022
Space Flight Laboratory (SFL) and GHGSat Announce Successful Testing of Three New Greenhouse Gas Monitoring Satellites
May 05 2022
Hawkeye 360 Launches Next-generation Cluster 4 Satellites
Apr 01 2022
Space Flight Laboratory (SFL) Awarded Contract to Build Next Three Greenhouse Gas Monitoring Microsatellites for GHGSat
Mar 22 2022
Space Flight Laboratory (SFL) Wins NASA Rapid Spacecraft Acquisition Contract for Small Satellites
Feb 23 2022
Space Flight Laboratory (SFL) to Develop Two Small Satellites for NASA Astrophysics Pioneers Program
Jan 25 2022
SFL Makes Top Ten list of Satellite Solution Providers list by "Aerospace & Defense Review" magazine
Dec 20 2021
SFL Honored by International Astronautical Federation (IAF) as Member of the Month
Nov 02 2021
Critical Microspace Technologies for Successful Earth Observation
Sep 07 2021
Space Flight Laboratory (SFL) Awarded Norwegian Space Agency Contract to Build NorSat-4 Maritime Tracking Microsatellite
Aug 09 2021
Three HawkEye 360 Formation-Flying Microsatellites Built By Space Flight Laboratory (SFL) Successfully Launched
Jul 01 2021
NASA Selects Space Flight Laboratory (SFL) for StarBurst SmallSat Mission
Jun 28 2021
Why Small Satellites and the ‘Microspace’ Approach are Keys to Developing a National Earth Observation Program
Jun 03 2021
Norwegian Space Agency Announces Launch of NorSat-3 Maritime Tracking Microsatellite Built by Space Flight Laboratory (SFL)
Apr 29 2021
Microspace Technology Enables All Countries to Reap the Benefits of National Earth Observation Programs
Apr 16 2021
Dubai Municipality Announces Launch of DMSat-1 Atmospheric Monitoring Microsatellite Built by Space Flight Laboratory (SFL)
Mar 22 2021
Dubai Municipality and MBRSC to launch region’s first environmental nanometric satellite on March 20
Mar 11 2021
Blog - Quality is Not Synonymous with Standards
Mar 03 2021
GHGSat-C2 Captures First Methane Plume a Week After Launch
Feb 20 2021
Norway Selects Space Flight Laboratory (SFL) to Develop Technology Demonstrator Microsatellite
Feb 16 2021
Slovenia Releases Color Image from NEMO-HD Microsatellite Built by Space Flight Laboratory (SFL) in Collaboration with SPACE-SI
Feb 08 2021
Space Flight Laboratory (SFL) Announces Successful Launch of 12 Satellites on SpaceX Ride-Sharing Mission
Jan 26 2021
Blog-Systems Engineering vs the CubeSat Kit
Jan 11 2021
HawkEye 360’s Cluster 2 Smallsats Ship To Cape Canaveral For Upcoming Launch
Jan 08 2021
SatTV interviews SFL’s Dr. Robert E. Zee
Nov 24 2020
Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites
Nov 16 2020
GHGSat Reports Smallest Methane Emission Ever Detected from Space with Microsatellite Developed by Space Flight Laboratory (SFL)
Oct 22 2020
Space Flight Laboratory (SFL) Announces Launch of Two Satellites
Oct 08 2020
Space Flight Laboratory Announces Launch of Atmospheric Monitoring and Earth Observation Microsatellites
Sep 04 2020
Blog - Disruptive vs Operational Mission Strategies
Aug 12 2020
Blog - Join SFL at the Virtual SmallSat 2020
Jul 31 2020
Blog - SFL Serving Both NewSpace and MicroSpace Missions
Jul 29 2020
Blog - AISSat-1 Maritime Vessel Tracking Nanosat Celebrates 10th Anniversary
Jul 22 2020
HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER
Jul 17 2020
Blog - SFL Comprehensive Microspace Mission Development Includes Ground Segment
Jul 06 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 2
Jun 01 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 1
May 22 2020
Blog - What’s Under Development at SFL? Atmospheric Monitoring Missions
Apr 27 2020
Blog - What’s Under Development at SFL? Ship Tracking and Remote Sensing Missions
Mar 26 2020
Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
View All News Articles View All Blog Articles
©2022 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.