Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation

TORONTO, Ontario, Canada, 3 February 2020 – Space Flight Laboratory (SFL), a developer of microspace missions for over 21 years, is designing and building the first fully operational nanosatellite in Kepler Communications’ next-generation constellation of communications satellites. In addition, SFL is helping Kepler to set up their own manufacturing workflow at a new facility in Toronto where subsequent nanosatellites will be mass produced based on the design of the first satellite. SFL is specifically designing the first satellite with mass production in mind.

“Our collaboration with Kepler is an excellent example of how a microspace company can support the business model of a newspace organization,” said SFL Director Dr. Robert E. Zee. “Kepler is able to leverage the extensive design expertise, heritage, and on-orbit performance of SFL and combine that with the cost benefits of inhouse manufacturing.”

Headquartered in Toronto, Kepler Communications develops next-generation satellite communication technologies and provides global data backhaul services for wideband and Internet of Things (IoT) applications. With two demonstration satellites in orbit and another planned for launch this year, Kepler specializes in providing affordable high-capacity connectivity to underserved geographic areas.

“SFL’s abundant experience and heritage in the small satellite industry lends us confidence in the new developments and allows us to establish a baseline of technical credibility and assurance for the spacecraft that we can continue to build upon in the years ahead,” said Kepler’s CEO and co-founder Mina Mitry.

Working with Kepler on design specifications, SFL is developing a new 6U-XL nanosatellite platform tailored to accommodate the communications payload. The operational nanosatellites, referred to by Kepler as its Gen1 cluster, will incorporate significant upgrades from the demonstration satellites and offer higher data capacities.

“We are designing the Gen1 cluster with the reliability, performance, and capabilities needed to meet the demands of fully commercial operations and the newspace business model,” said SFL’s Zee.

As the first operational satellite is developed, SFL personnel will provide training and technical support to Kepler as it creates a manufacturing workflow capable of assembling and integrating the additional operational nanosatellites. This mass production will occur in a 5,000-square-foot facility Kepler has built at its headquarters in Toronto, which will enable Kepler to build and maintain its planned constellation of 140 satellites.

SFL will be exhibiting in Booth 17 at SmallSat Symposium 2020 being held February 3-6 at the Computer History Museum in Mountain View, Calif.

Established in 1998, SFL has built more than 25 distinct nano- and microsatellites with over 115 cumulative years of successful operation in orbit. Many of these microspace missions have included SFL’s trusted attitude control and formation-flying technologies.

About Space Flight Laboratory
SFL generates bigger returns from smaller, lower cost satellites. Small satellites built by SFL consistently push the performance envelope and disrupt the traditional cost paradigm. Satellites are built with advanced power systems, stringent attitude control and high-volume data capacity that are striking relative to the budget. SFL arranges launches globally and maintains a mission control center accessing ground stations worldwide. The pioneering and barrier-breaking work of SFL is a key enabler to tomorrow’s cost aggressive satellite constellations.

LATEST NEWS & BLOGS

Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
HawkEye 360 Awards Contract to Build Next-Generation Satellite Constellation to Achieve Rapid Revisit for Global Spectrum Awareness
Sep 18 2019
Space Flight Laboratory to Build HawkEye 360 Next-Gen Microsatellite Cluster for Commercial Radio Frequency Geolocation
Mar 27 2019
Canada Awards Contracts In Support of Arctic Surveillance
Feb 01 2019
Arianespace to Launch Slovenian NEMO-HD Microsatellite
Dec 03 2018
HawkEye 360 Announces Successful Launch of First Three Satellites Built by SFL Under Contract to DSI
Dec 03 2018
A New Star in the Sky
Nov 20 2018
GHGSat selects Arianespace to launch GHGSat-C1 on Vega
Nov 15 2018
UTIAS-SFL Students Win Significant Awards for their Technical Papers
Aug 14 2018
SFL-Led Nanosatellite Team Receives Canadian Alouette Award for Precise Autonomous Formation Flight
May 17 2018
NorSat-3 Ordered by Norwegian Space Centre, Satellite Under Construction at SFL
Jan 10 2018
Norwegian AIS Satellites See Far More Ships
Jan 10 2018
BRITE Reveals Spots on Supergiant Star Drive Spirals in Stellar Wind
Oct 24 2017
CLARA on NorSat-1 Successfully Switched on for the First Time
Aug 25 2017
Norwegian Satellites Launched Successfully and Healthy
Jul 14 2017
GHGSat Unveils Satellite Imagery
May 23 2017
Dubai Space Centre Orders Environmental Monitoring Satellite from SFL
May 16 2017
After Only One Week, CanX-7 Shows Drag Sails are Effective at Deorbiting Satellite
May 11 2017
CanX-7 Successfully Deploys Drag Sails kicking off Deorbiting Demonstration
May 04 2017
GHGSat Announces 1000th Measurement – Two Months Ahead of Schedule
Apr 07 2017
Space Flight Laboratory (SFL) Nanosatellite Validates Aircraft Tracking, Prepares for Deorbit Demo
Mar 30 2017
Space Flight Laboratory (SFL) to Develop Microsatellites for Greenhouse Gas Monitoring
Mar 24 2017
CanX-7 Aircraft Tracking and Deorbiting Demo Satellite Launched, Contacted, and Healthy
Sep 26 2016
GHGSat-D (CLAIRE) Bus Commissioning Ahead of Schedule
Jun 27 2016
M3MSat Launched and Successfully Contacted
Jun 22 2016
GHGSat-D (CLAIRE) Launches Successfully and First Contact Indicates Good Health
Jun 22 2016
Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission
May 26 2016
Space Flight Laboratory (SFL) to Provide LEO Bus to SSL
May 10 2016
NORSAT-1 Launch Postponed Due to Faulty Bracket Provided by Arianespace
Apr 14 2016
BRITE-Constellation Sees Stars in a New Light
Feb 05 2016
Deep Space Industries Teams with UTIAS Space Flight Laboratory to Demonstrate Autonomous Spacecraft Maneuvering
Jan 26 2016
exactView-9 Launched Successfully and Contacted
Sep 28 2015
SFL’s Josh Newman Wins 1st Place in Small Satellite Student Competition for CanX-4 and CanX-5 Formation Flying Mission Contribution
Aug 12 2015
NORSAT-2 Contract Awarded to SFL by Norwegian Space Centre
Jul 13 2015
CanX-4&5 Formation Flying Mission Accomplished
Nov 05 2014
CanX-4 & CanX-5 Formation Flying Mission, One Month in Space
Jul 30 2014
Space Flight Laboratory Launches Five Satellites in Two Weeks
Jul 08 2014
AISSat-2 Successfully Launched
Jul 08 2014
Update on BRITE-Toronto and BRITE-Montreal
Jul 03 2014
Indian rocket successfully launches two Canadian satellites
Jun 30 2014
Two low-cost, car battery-sized Canadian space telescopes launched today
Jun 19 2014
UniBRITE and BRITE-Austria Commissioned and Operating Successfully
Feb 25 2014
Canadian Space Agency Awards Propulsion System Development Contract to SFL
Dec 02 2013
BRITE-PL1, WNISat-1, and GOMX-1 Launch Successfully
Nov 21 2013
Norwegian Space Centre Awards AISSat-3 Project to SFL
Jul 08 2013
View All News Articles View All Blog Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.