Nanosatellites: Kepler

June 17, 2020

kepler mission patchMass Produced Communication Satellites for the Internet of Things

Space Flight Laboratory (SFL) and Kepler Communications have entered into a satellite development and manufacturing agreement that could serve as a blueprint for future collaboration between microspace and newspace organizations.

SFL has designed and built the first fully operational Gen1 nanosatellite in Kepler’s constellation of commercial communications satellites. The design of this satellite will be used by Kepler in mass producing 140 satellites. SFL personnel are assisting with the start up of production at a Kepler-owned and operated manufacturing facility where duplicate satellites will be mass produced.

“The key to success for a microspace company has always relied on continuous innovation in an environment that does nothing but constantly design satellites for new applications,” explains Dr. Robert E. Zee, SFL Director. “SFL has been developing micro- and nanosatellites for 22 years, and its advantage is that it is completely focused on designing new satellites in rapid succession,” he said.

For newspace companies, on the other hand, the business model is bottom-line oriented, driven by the need to offer satellite-derived services at ever-competitive prices. Earth observation and data communications are among the most common. These newspace organizations are not in the satellite manufacturing business per se, but they bring mass production in house as a cost-control measure.

“Our partnership with SFL has enabled us on many fronts, especially ensuring we can reach our required cost and performance targets to provide affordable global connectivity,” said Kepler CEO and Co-Founder Mina Mitry.

Providing Global Data Connectivity
Kepler offers two primary communications services. The first is a global data transfer service that will securely relay gigabytes of data in a high-bandwidth store-and-forward solution via a Ku-band high-data-rate communications system aboard each satellite. The second service will provide cellular-quality, standardized Internet of Things (IoT) connections linking sensors and devices anywhere on Earth with their service provider.

“A critical part of our business model is to bring data connectivity to remote and underserved areas – including the polar regions,” said Mitry, citing energy exploration, agricultural monitoring, fleet management and maritime transport as example end user markets.

For the Kepler program, SFL is utilizing its new 6U XL nanosatellite platform “SPARTAN” which is part of SFL’s new line of high-performance CubeSats along with the THUNDER (3U) and JAEGER (12U/16U) variants. SFL has adapted heritage avionics and attitude control for this new line.

A crucial element in both the satellite design and production workflows is that both are being built in anticipation of disruption. “They are designed to allow for upgrades and changes to the system as the constellation advances,” said Kepler’s Mitry. This will allow Kepler to leverage microspace advances at SFL to stay ahead of the competition by rapidly reinventing its satellite constellation when necessary.

“From innovation to launch, we are creating an agile satellite production process,” said Zee. “We expect our approach will define microspace-newspace collaboration for decades to come.”

LATEST NEWS & BLOGS

SatTV interviews SFL’s Dr. Robert E. Zee
Nov 24 2020
Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites
Nov 16 2020
GHGSat Reports Smallest Methane Emission Ever Detected from Space with Microsatellite Developed by Space Flight Laboratory (SFL)
Oct 22 2020
Space Flight Laboratory (SFL) Announces Launch of Two Satellites
Oct 08 2020
Space Flight Laboratory Announces Launch of Atmospheric Monitoring and Earth Observation Microsatellites
Sep 04 2020
Blog - Disruptive vs Operational Mission Strategies
Aug 12 2020
Blog - Join SFL at the Virtual SmallSat 2020
Jul 31 2020
Blog - Space Flight Laboratory Announces New Line of Cost-Effective CubeSats to Expand its Current Satellite Offerings
Jul 29 2020
Blog - AISSat-1 Maritime Vessel Tracking Nanosat Celebrates 10th Anniversary
Jul 22 2020
HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER
Jul 17 2020
Blog - SFL Comprehensive Microspace Mission Development Includes Ground Segment
Jul 06 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 2
Jun 01 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 1
May 22 2020
Blog - What’s Under Development at SFL? Atmospheric Monitoring Missions
Apr 27 2020
Blog - What’s Under Development at SFL? Ship Tracking and Remote Sensing Missions
Mar 26 2020
Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
HawkEye 360 Awards Contract to Build Next-Generation Satellite Constellation to Achieve Rapid Revisit for Global Spectrum Awareness
Sep 18 2019
Space Flight Laboratory to Build HawkEye 360 Next-Gen Microsatellite Cluster for Commercial Radio Frequency Geolocation
Mar 27 2019
Canada Awards Contracts In Support of Arctic Surveillance
Feb 01 2019
Arianespace to Launch Slovenian NEMO-HD Microsatellite
Dec 03 2018
HawkEye 360 Announces Successful Launch of First Three Satellites Built by SFL Under Contract to DSI
Dec 03 2018
A New Star in the Sky
Nov 20 2018
GHGSat selects Arianespace to launch GHGSat-C1 on Vega
Nov 15 2018
UTIAS-SFL Students Win Significant Awards for their Technical Papers
Aug 14 2018
SFL-Led Nanosatellite Team Receives Canadian Alouette Award for Precise Autonomous Formation Flight
May 17 2018
NorSat-3 Ordered by Norwegian Space Centre, Satellite Under Construction at SFL
Jan 10 2018
Norwegian AIS Satellites See Far More Ships
Jan 10 2018
BRITE Reveals Spots on Supergiant Star Drive Spirals in Stellar Wind
Oct 24 2017
CLARA on NorSat-1 Successfully Switched on for the First Time
Aug 25 2017
Norwegian Satellites Launched Successfully and Healthy
Jul 14 2017
GHGSat Unveils Satellite Imagery
May 23 2017
Dubai Space Centre Orders Environmental Monitoring Satellite from SFL
May 16 2017
After Only One Week, CanX-7 Shows Drag Sails are Effective at Deorbiting Satellite
May 11 2017
CanX-7 Successfully Deploys Drag Sails kicking off Deorbiting Demonstration
May 04 2017
GHGSat Announces 1000th Measurement – Two Months Ahead of Schedule
Apr 07 2017
Space Flight Laboratory (SFL) Nanosatellite Validates Aircraft Tracking, Prepares for Deorbit Demo
Mar 30 2017
Space Flight Laboratory (SFL) to Develop Microsatellites for Greenhouse Gas Monitoring
Mar 24 2017
CanX-7 Aircraft Tracking and Deorbiting Demo Satellite Launched, Contacted, and Healthy
Sep 26 2016
GHGSat-D (CLAIRE) Bus Commissioning Ahead of Schedule
Jun 27 2016
M3MSat Launched and Successfully Contacted
Jun 22 2016
GHGSat-D (CLAIRE) Launches Successfully and First Contact Indicates Good Health
Jun 22 2016
Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission
May 26 2016
Space Flight Laboratory (SFL) to Provide LEO Bus to SSL
May 10 2016
NORSAT-1 Launch Postponed Due to Faulty Bracket Provided by Arianespace
Apr 14 2016
BRITE-Constellation Sees Stars in a New Light
Feb 05 2016
View All News Articles View All Blog Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.