HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER

Courtesty of Hawkeye 360

hawkeye 360 milestone

Successful testing of new satellites paves the way for faster, more robust data collection and intelligence

Herndon, Virginia (July 16, 2020) — HawkEye 360 Inc., the first commercial company to use formation flying satellites to create a new class of radio frequency (RF) data and data analytics, today announced it has successfully completed environmental testing of its second cluster of three satellites. This significant milestone for HawkEye Cluster 2 clears the way to prepare for launch, which is scheduled for late 2020. HawkEye Cluster 2 will join the company’s first cluster of satellites that were launched in December 2018, doubling the size of HawkEye 360’s constellation. This is the first cluster in a series of next generation satellites that will improve revisit rates and bring increasingly robust RF data insights to US and international customers to inform their decision-making processes.

HawkEye 360 has five more clusters of satellites fully financed and under development for launch in 2021 and early 2022. This growing constellation identifies and precisely geolocates a broad set of RF signals from emitters such as VHF marine radios, UHF push-to-talk radios, maritime radar systems, AIS beacons, L-band satellite devices, emergency beacons and more. HawkEye 360 processes and analyzes this data using proprietary algorithms and machine-learning tools to deliver actionable insights to customers.

hawkeye 360

HawkEye Cluster 2 satellite undergoing thermal vacuum testing. Credit SFL

HawkEye Cluster 2 features significant advancements:

  • Improved Capability: The satellites contain a new and improved software-defined radio (SDR) that can tune to a wide range of frequencies and gather higher-resolution signal data to deliver quality results to customers.
  • Greater Accuracy: With powerful updated on-board computing, the satellites can process data at a faster rate, leading to increased geolocations with an even greater degree of accuracy, so customers receive the best possible RF geospatial intelligence.
  • Simultaneous Collection: The satellites can simultaneously collect multiple signals over a single region for enhanced analytics that help customers make more informed decisions.

“HawkEye 360’s investment to advance the field of space-based RF geoanalytics isn’t just about defense and intelligence missions, but it’s also about protecting our global commons by identifying and tracking illicit activities such as illegal fishing, human trafficking, and animal poaching,” said HawkEye 360’s Chief Executive, Officer John Serafini. “In just 18 months, our first cluster has tracked 20 million geolocations and signals of interest to feed growing demand from civil service and defense clients around the world. The successful environmental testing of our HawkEye Cluster 2 satellites brings us one step closer to our goal of a fully operational constellation that will transform invisible signals into insights that make the world a safer place.”

HawkEye 360 built the RF payloads, which UTIAS Space Flight Laboratory (SFL) integrated into the satellite bus. SFL conducted the environmental testing efforts, which included vibration, thermal vacuum, and electromagnetic interference testing. These tests simulate the environment the satellites will encounter in space. The next step is to prepare the satellites for launch integration.

“Each new cluster increases HawkEye 360’s capacity to collect more data that we can then process, analyze and deliver as relevant and robust data insights,” said HawkEye 360’s Chief Operating Officer, Rob Rainhart. “The highly advanced HawkEye Cluster 2 satellites can capture multiple signal layers at once to create a more accurate and detailed visual of activity and then bring that data down in a shorter period of time for our customers’ benefit.”

For more information on the HawkEye Cluster 2 satellites and enhanced capabilities, please visit https://www.he360.com/technology/constellation/.

LATEST NEWS & BLOGS

Space Flight Laboratory Announces Launch of Atmospheric Monitoring and Earth Observation Microsatellites
Sep 04 2020
Blog - Disruptive vs Operational Mission Strategies
Aug 12 2020
Blog - Join SFL at the Virtual SmallSat 2020
Jul 31 2020
Blog - Space Flight Laboratory Announces New Line of Cost-Effective CubeSats to Expand its Current Satellite Offerings
Jul 29 2020
Blog - AISSat-1 Maritime Vessel Tracking Nanosat Celebrates 10th Anniversary
Jul 22 2020
HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER
Jul 17 2020
Blog - SFL Comprehensive Microspace Mission Development Includes Ground Segment
Jul 06 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 2
Jun 01 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 1
May 22 2020
Blog - What’s Under Development at SFL? Atmospheric Monitoring Missions
Apr 27 2020
Blog - What’s Under Development at SFL? Ship Tracking and Remote Sensing Missions
Mar 26 2020
Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
HawkEye 360 Awards Contract to Build Next-Generation Satellite Constellation to Achieve Rapid Revisit for Global Spectrum Awareness
Sep 18 2019
Space Flight Laboratory to Build HawkEye 360 Next-Gen Microsatellite Cluster for Commercial Radio Frequency Geolocation
Mar 27 2019
Canada Awards Contracts In Support of Arctic Surveillance
Feb 01 2019
Arianespace to Launch Slovenian NEMO-HD Microsatellite
Dec 03 2018
HawkEye 360 Announces Successful Launch of First Three Satellites Built by SFL Under Contract to DSI
Dec 03 2018
A New Star in the Sky
Nov 20 2018
GHGSat selects Arianespace to launch GHGSat-C1 on Vega
Nov 15 2018
UTIAS-SFL Students Win Significant Awards for their Technical Papers
Aug 14 2018
SFL-Led Nanosatellite Team Receives Canadian Alouette Award for Precise Autonomous Formation Flight
May 17 2018
NorSat-3 Ordered by Norwegian Space Centre, Satellite Under Construction at SFL
Jan 10 2018
Norwegian AIS Satellites See Far More Ships
Jan 10 2018
BRITE Reveals Spots on Supergiant Star Drive Spirals in Stellar Wind
Oct 24 2017
CLARA on NorSat-1 Successfully Switched on for the First Time
Aug 25 2017
Norwegian Satellites Launched Successfully and Healthy
Jul 14 2017
GHGSat Unveils Satellite Imagery
May 23 2017
Dubai Space Centre Orders Environmental Monitoring Satellite from SFL
May 16 2017
After Only One Week, CanX-7 Shows Drag Sails are Effective at Deorbiting Satellite
May 11 2017
CanX-7 Successfully Deploys Drag Sails kicking off Deorbiting Demonstration
May 04 2017
GHGSat Announces 1000th Measurement – Two Months Ahead of Schedule
Apr 07 2017
Space Flight Laboratory (SFL) Nanosatellite Validates Aircraft Tracking, Prepares for Deorbit Demo
Mar 30 2017
Space Flight Laboratory (SFL) to Develop Microsatellites for Greenhouse Gas Monitoring
Mar 24 2017
CanX-7 Aircraft Tracking and Deorbiting Demo Satellite Launched, Contacted, and Healthy
Sep 26 2016
GHGSat-D (CLAIRE) Bus Commissioning Ahead of Schedule
Jun 27 2016
M3MSat Launched and Successfully Contacted
Jun 22 2016
GHGSat-D (CLAIRE) Launches Successfully and First Contact Indicates Good Health
Jun 22 2016
Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission
May 26 2016
Space Flight Laboratory (SFL) to Provide LEO Bus to SSL
May 10 2016
NORSAT-1 Launch Postponed Due to Faulty Bracket Provided by Arianespace
Apr 14 2016
BRITE-Constellation Sees Stars in a New Light
Feb 05 2016
Deep Space Industries Teams with UTIAS Space Flight Laboratory to Demonstrate Autonomous Spacecraft Maneuvering
Jan 26 2016
exactView-9 Launched Successfully and Contacted
Sep 28 2015
SFL’s Josh Newman Wins 1st Place in Small Satellite Student Competition for CanX-4 and CanX-5 Formation Flying Mission Contribution
Aug 12 2015
NORSAT-2 Contract Awarded to SFL by Norwegian Space Centre
Jul 13 2015
View All News Articles View All Blog Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.