Norway Selects Space Flight Laboratory (SFL) to Develop Technology Demonstrator Microsatellite

Advanced AIS and Laser Communications Onboard

NorSat-TD

Artist’s rendering of NorSat-TD in orbit. (Credit: Space Flight Laboratory (SFL).

TORONTO, Ontario, Canada, 16 February 2021 – The Norwegian Space Agency (NOSA) has awarded Space Flight Laboratory (SFL) of Canada a contract to develop the NorSat Technology Demonstrator (TD) microsatellite. With a primary mission of testing out new technologies in space, NorSat-TD will validate payloads and concepts from Norway, the Netherlands, France, and Italy.

SFL, which developed the operational NorSat-1 and -2 microsatellites launched in 2017, as well as NorSat-3 expected to launch in Q2 2021, has been contracted to design and build the NorSat-TD spacecraft and perform integration and testing of all systems and payloads. NorSat-TD has completed its final design review and been slated for launch in 2022.

“The Norwegian Coastal Administration relies on NorSat-1 and -2 to accurately track large commercial vessels in its territorial waters and beyond,” said SFL Director, Dr. Robert E. Zee. “NorSat-TD will fly technology that is planned to augment the ship tracking capability of Norway with a miniaturized AIS-receiver and aims to expand the technology available for future missions, including micropropulsion, precise point positioning and laser-based communications.”

NorSat-1, -2 and -3 were built on SFL’s 15-kg NEMO microsatellite platform, measuring 20x20x40 cm. Due to the additional payloads planned for NorSat-TD, the demonstration satellite will be developed using SFL’s larger 30x30x40-cm DEFIANT microsatellite bus with a mass of 35 kg.

“You can think of DEFIANT as a NEMO platform that doesn’t require a dispenser,” said Zee.

NorSat-TD represents impressive technological collaboration among European nations. Multiple advanced or experimental payloads will see their first applications in orbit aboard the microsatellite:

Fifth Generation AIS Receiver – An advanced version of the Automatic Identification System (AIS) receivers developed by Kongsberg Seatex of Trondheim, Norway, as primary instruments for the first three NorSats, this miniaturized device with CubeSat form factor will receive AIS signals broadcast by large commercial maritime vessels. AIS enables the locations and status of ships to be tracked and monitored. The new NorSat-TD receiver will also be used to test the Internet of Things in the Arctic, according to NOSA.

Small Communication Active Terminal (SmallCAT) – Developed by TNO, the Netherlands Organization for Applied Scientific Research, this instrument is also intended to support the Norwegian Defence Research Establishment’s experiments with laser communications between the satellite their ground station, a potential gamechanger in the data volume that is possible from microsatellites in orbit.

VHF Data Exchange System (VDES) – from Space Norway, an advanced communication system that first flew on NorSat-2 has been improved to enable higher bandwidth, more reliable two-way communications among and between satellites, ships, and land. Working together, NorSat-2 and NorSat-TD will provide greater communication capacity for ships in Norwegian waters, according to NOSA.

Onboard Laser Reflector – A miniaturized laser reflector developed by the Italian INRI SCF research laboratory will be used to track NorSat-TD with ground-based lasers in Norway, France, and Italy.

Satellite Collision Avoidance – Space Star, a space-based GPS instrument developed by Fugro will be tested as a highly accurate means of determining a satellite’s position in orbit for improved situational awareness.

Iodine-Fueled Electric Propulsion – ThrustMe, a French startup, has developed a new thruster designed to change a satellite’s orbit, which will be tested on NorSat-TD. One potential future use of the thruster will be to move a spent satellite to a lower orbit, so it burns up in the Earth’s atmosphere rather than leaving behind space debris.

NorSat-TD will be the seventh satellite developed by SFL for Norway. SFL built and integrated the AISSat-1 nanosatellite launched in 2010 to determine if reception of AIS signals in orbit was feasible. AISSat-1 proved so robust that Norway soon commissioned it as an operational ship-tracking mission. Subsequently, additional AISSats were built and launched and a new line of higher capacity microsatellites, the NorSats, were developed.

“NOSA is glad to be working with SFL on this demanding project. The flexibility of SFL and their micro-satellite platforms have met the varied and demanding challenges of this multi-mission technology demonstrator. We feel that this mission is again pushing the envelope for what we are able accomplish with these fast-paced low footprint projects,” said NorSat-TD Project Manager, Tyler Jones.

SFL is a unique microspace provider that offers a complete suite of nano-, micro- and small satellites – including high-performance, low-cost CubeSats – that satisfy the needs of a broad range of mission types from 3 to 500 kilograms. Dating from 1998, SFL’s heritage of on-orbit successes includes 65 distinct missions related to Earth observation, atmospheric monitoring, ship tracking, communication, radio frequency (RF) geolocation, technology demonstration, space astronomy, solar physics, space plasma, and other scientific research.

In its 23-year history, SFL has developed CubeSats, nanosatellites, and microsatellites that have achieved more than 135 cumulative years of operation in orbit. These microspace missions have included SFL’s trusted attitude control and, in some cases, formation-flying capabilities. Other core SFL-developed components include modular (scalable) power systems, onboard radios, flight computers, and control software.

About Space Flight Laboratory (SFL) (www.utias-sfl.net)
SFL generates bigger returns from smaller, lower cost satellites. Small satellites built by SFL consistently push the performance envelope and disrupt the traditional cost paradigm. Satellites are built with advanced power systems, stringent attitude control and high-volume data capacity that are striking relative to the budget. SFL arranges launches globally and maintains a mission control center accessing ground stations worldwide. The pioneering and barrier-breaking work of SFL is a key enabler to tomorrow’s cost aggressive satellite constellations. (www.utias-sfl.net)

Download the specification sheet for all SFL platforms here.

Dr. Robert E. Zee
SFL Director
1-416-667-7400
info@utias-sfl.net
Follow SFL on Twitter @SFL_SmallerSats

LATEST NEWS & BLOGS

Three HawkEye 360 Formation-Flying Microsatellites Built By Space Flight Laboratory (SFL) Successfully Launched
Jul 01 2021
NASA Selects Space Flight Laboratory (SFL) for StarBurst SmallSat Mission
Jun 28 2021
Why Small Satellites and the ‘Microspace’ Approach are Keys to Developing a National Earth Observation Program
Jun 03 2021
Norwegian Space Agency Announces Launch of NorSat-3 Maritime Tracking Microsatellite Built by Space Flight Laboratory (SFL)
Apr 29 2021
Microspace Technology Enables All Countries to Reap the Benefits of National Earth Observation Programs
Apr 16 2021
Dubai Municipality Announces Launch of DMSat-1 Atmospheric Monitoring Microsatellite Built by Space Flight Laboratory (SFL)
Mar 22 2021
Dubai Municipality and MBRSC to launch region’s first environmental nanometric satellite on March 20
Mar 11 2021
Blog - Quality is Not Synonymous with Standards
Mar 03 2021
GHGSat-C2 Captures First Methane Plume a Week After Launch
Feb 20 2021
Norway Selects Space Flight Laboratory (SFL) to Develop Technology Demonstrator Microsatellite
Feb 16 2021
Slovenia Releases Color Image from NEMO-HD Microsatellite Built by Space Flight Laboratory (SFL) in Collaboration with SPACE-SI
Feb 08 2021
Space Flight Laboratory (SFL) Announces Successful Launch of 12 Satellites on SpaceX Ride-Sharing Mission
Jan 26 2021
Blog-Systems Engineering vs the CubeSat Kit
Jan 11 2021
HawkEye 360’s Cluster 2 Smallsats Ship To Cape Canaveral For Upcoming Launch
Jan 08 2021
SatTV interviews SFL’s Dr. Robert E. Zee
Nov 24 2020
Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites
Nov 16 2020
GHGSat Reports Smallest Methane Emission Ever Detected from Space with Microsatellite Developed by Space Flight Laboratory (SFL)
Oct 22 2020
Space Flight Laboratory (SFL) Announces Launch of Two Satellites
Oct 08 2020
Space Flight Laboratory Announces Launch of Atmospheric Monitoring and Earth Observation Microsatellites
Sep 04 2020
Blog - Disruptive vs Operational Mission Strategies
Aug 12 2020
Blog - Join SFL at the Virtual SmallSat 2020
Jul 31 2020
Blog - SFL Serving Both NewSpace and MicroSpace Missions
Jul 29 2020
Blog - AISSat-1 Maritime Vessel Tracking Nanosat Celebrates 10th Anniversary
Jul 22 2020
HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER
Jul 17 2020
Blog - SFL Comprehensive Microspace Mission Development Includes Ground Segment
Jul 06 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 2
Jun 01 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 1
May 22 2020
Blog - What’s Under Development at SFL? Atmospheric Monitoring Missions
Apr 27 2020
Blog - What’s Under Development at SFL? Ship Tracking and Remote Sensing Missions
Mar 26 2020
Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
HawkEye 360 Awards Contract to Build Next-Generation Satellite Constellation to Achieve Rapid Revisit for Global Spectrum Awareness
Sep 18 2019
Space Flight Laboratory to Build HawkEye 360 Next-Gen Microsatellite Cluster for Commercial Radio Frequency Geolocation
Mar 27 2019
Canada Awards Contracts In Support of Arctic Surveillance
Feb 01 2019
Arianespace to Launch Slovenian NEMO-HD Microsatellite
Dec 03 2018
HawkEye 360 Announces Successful Launch of First Three Satellites Built by SFL Under Contract to DSI
Dec 03 2018
A New Star in the Sky
Nov 20 2018
GHGSat selects Arianespace to launch GHGSat-C1 on Vega
Nov 15 2018
UTIAS-SFL Students Win Significant Awards for their Technical Papers
Aug 14 2018
SFL-Led Nanosatellite Team Receives Canadian Alouette Award for Precise Autonomous Formation Flight
May 17 2018
NorSat-3 Ordered by Norwegian Space Centre, Satellite Under Construction at SFL
Jan 10 2018
Norwegian AIS Satellites See Far More Ships
Jan 10 2018
BRITE Reveals Spots on Supergiant Star Drive Spirals in Stellar Wind
Oct 24 2017
CLARA on NorSat-1 Successfully Switched on for the First Time
Aug 25 2017
Norwegian Satellites Launched Successfully and Healthy
Jul 14 2017
GHGSat Unveils Satellite Imagery
May 23 2017
View All News Articles View All Blog Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.