Space Flight Laboratory Announces Successful Deorbiting of Nanosatellite with Drag Sail Technology. Sails Reduced Time as Space Debris by 178 Years

CanX-7 Spacecraft (10 x 10 x 34 cm – roughly the size of a half-gallon milk carton) with Deployed Drag Sail during testing at SFL

TORONTO, Ontario, Canada, 13 June 2022 – Space Flight Laboratory (SFL) announced the successful deorbiting of the 3.5kg CanX-7 demonstration nanosatellite using drag sail technology designed to reduce the time retired small satellites spend in orbit as space debris. CanX-7 burned up in Earth’s atmosphere last month, just five years after drag sail deployment and roughly 178 years before it would have without any deorbit technology.

“The SFL drag sail technology developed for nano- and microsatellites is among the only commercially viable deorbiting devices available today, aside from propulsion,” said SFL Director Dr. Robert E. Zee. “The drag sails performed better than designed, deorbiting CanX-7 in far less time than the maximum 25-year target recommended by the Inter-Agency Space Debris Coordination Committee (IADC).”

CanX-7 was a 10x10x34cm nanosatellite built by SFL and funded by Defence Research and Development Canada, the Natural Sciences and Engineering Research Council, COM DEV Ltd., and the Canadian Space Agency. The satellite was launched in September 2016 with a two-fold mission of demonstrating Automatic Dependent Surveillance – Broadcast (ADS-B) message collection from space for global aircraft situational awareness, and then testing the deorbiting technology developed by SFL.

SFL deployed the four drag sails – each about one square meter in area – on May 4, 2017, with the intent of decreasing the ballistic coefficient of the nanosatellite and using atmospheric drag to accelerate orbital decay. Mission participants observed an almost immediate change in altitude decay rate and continued tracking the orbital decay rate until CanX-7 re-entered the atmosphere on April 21, 2022.

“Orbital debris is a big concern for the space industry, and the passive de-orbit technology demonstrated on CanX-7 is an advantageous solution for nano- and microsatellites,” said SFL’s CanX-7 Mission Manager, Brad Cotten. “The mission verified that SFL’s lightweight drag sail technology is a more cost-effective and less complex method for deorbiting smaller satellites than traditional propulsion techniques.”

Additionally, the deorbiting technology allows nano- and microsatellites to be launched into a wider range of orbits than would be possible if natural orbital decay were to be relied upon, explained Cotten.

CanX-7 project participants lauded the successful end to the mission, which is the first Canadian satellite to be independently deorbited by commanded atmospheric re-entry.

According to Dr. Lauchie Scott, defence scientist with Defence Research and Development Canada, the CanX-7 drag sail deployment campaign provided a very rare opportunity to observe a satellite drastically change shape and size while being tracked by ground-based telescopes. This view showed the nanosatellite’s brightness signature during the sail deployment and how its rotational motion evolved while the longer-term space sustainability deorbit experiment continued.

Dr. Scott added that this was an outstanding Canadian collaboration to help mitigate risk from space debris.

According to Dr. Brad Wallace, defence scientist with Defence Research and Development Canada, the project successfully proved that UTIAS/SFL’s innovative drag-sail technology can deorbit a spacecraft decades faster than would have happened otherwise and demonstrated Canada’s continued leadership not only in space technology, but also in responsible space stewardship. He added that the lessons learned from the CanX-7 mission will be used to help minimize the number of inoperable spacecraft orbiting the Earth, ensuring that space continues to be used to benefit Canadians and people around the world.   

SFL is a unique microspace provider that offers a complete suite of nano-, micro- and small satellites – including high-performance, low-cost CubeSats – that satisfy the needs of a broad range of mission types from 3 to 500 kilograms. Dating from 1998, SFL’s heritage includes 61 operational successes and 31 currently under construction or awaiting launch. These missions relate to Earth observation, atmospheric monitoring, ship tracking, communication, radio frequency (RF) geolocation, technology demonstration, space astronomy, solar physics, space plasma, and other scientific research.

In its 24-year history, SFL has developed CubeSats, nanosatellites, and microsatellites that have achieved more than 194 cumulative years of operation in orbit. These microspace missions have included SFL’s trusted attitude control and, in some cases, formation-flying capabilities. Other core SFL-developed components include modular (scalable) power systems, onboard radios, flight computers, and control software.

About Space Flight Laboratory (SFL) (www.utias-sfl.net)

SFL generates bigger returns from smaller, lower cost satellites. Small satellites built by SFL consistently push the performance envelope and disrupt the traditional cost paradigm. Satellites are built with advanced power systems, stringent attitude control and high-volume data capacity that are striking relative to the budget. SFL arranges launches globally and maintains a mission control center accessing ground stations worldwide. The pioneering and barrier-breaking work of SFL is a key enabler to tomorrow’s cost aggressive satellites and constellations. (www.utias-sfl.net)

Download the specification sheet for all SFL platforms here.

SFL Contact:

Dr. Robert E. Zee

SFL Director

1-416-667-7400

info@utias-sfl.net

Follow SFL on Twitter @SFL_SmallerSats

LATEST NEWS & BLOGS

Space Flight Laboratory (SFL) Nears Completion of GHGSat Greenhouse Gas Monitoring Constellation Core Satellites
Sep 19 2022
GHGSat doubles capacity in record time following launch and operationalization of three new satellites
Aug 11 2022
Space Flight Laboratory Announces Successful Deorbiting of Nanosatellite with Drag Sail Technology. Sails Reduced Time as Space Debris by 178 Years
Jun 13 2022
Six Microsatellites Built by Space Flight Laboratory (SFL) of Toronto Launched Aboard SpaceX Transporter-5 Mission - 36 SFL-Built Satellites Launched in Past Two Years
Jun 02 2022
Space Flight Laboratory (SFL) and GHGSat Announce Successful Testing of Three New Greenhouse Gas Monitoring Satellites
May 05 2022
Hawkeye 360 Launches Next-generation Cluster 4 Satellites
Apr 01 2022
Space Flight Laboratory (SFL) Awarded Contract to Build Next Three Greenhouse Gas Monitoring Microsatellites for GHGSat
Mar 22 2022
Space Flight Laboratory (SFL) Wins NASA Rapid Spacecraft Acquisition Contract for Small Satellites
Feb 23 2022
Space Flight Laboratory (SFL) to Develop Two Small Satellites for NASA Astrophysics Pioneers Program
Jan 25 2022
SFL Makes Top Ten list of Satellite Solution Providers list by "Aerospace & Defense Review" magazine
Dec 20 2021
SFL Honored by International Astronautical Federation (IAF) as Member of the Month
Nov 02 2021
Critical Microspace Technologies for Successful Earth Observation
Sep 07 2021
Space Flight Laboratory (SFL) Awarded Norwegian Space Agency Contract to Build NorSat-4 Maritime Tracking Microsatellite
Aug 09 2021
Three HawkEye 360 Formation-Flying Microsatellites Built By Space Flight Laboratory (SFL) Successfully Launched
Jul 01 2021
NASA Selects Space Flight Laboratory (SFL) for StarBurst SmallSat Mission
Jun 28 2021
Why Small Satellites and the ‘Microspace’ Approach are Keys to Developing a National Earth Observation Program
Jun 03 2021
Norwegian Space Agency Announces Launch of NorSat-3 Maritime Tracking Microsatellite Built by Space Flight Laboratory (SFL)
Apr 29 2021
Microspace Technology Enables All Countries to Reap the Benefits of National Earth Observation Programs
Apr 16 2021
Dubai Municipality Announces Launch of DMSat-1 Atmospheric Monitoring Microsatellite Built by Space Flight Laboratory (SFL)
Mar 22 2021
Dubai Municipality and MBRSC to launch region’s first environmental nanometric satellite on March 20
Mar 11 2021
Blog - Quality is Not Synonymous with Standards
Mar 03 2021
GHGSat-C2 Captures First Methane Plume a Week After Launch
Feb 20 2021
Norway Selects Space Flight Laboratory (SFL) to Develop Technology Demonstrator Microsatellite
Feb 16 2021
Slovenia Releases Color Image from NEMO-HD Microsatellite Built by Space Flight Laboratory (SFL) in Collaboration with SPACE-SI
Feb 08 2021
Space Flight Laboratory (SFL) Announces Successful Launch of 12 Satellites on SpaceX Ride-Sharing Mission
Jan 26 2021
Blog-Systems Engineering vs the CubeSat Kit
Jan 11 2021
HawkEye 360’s Cluster 2 Smallsats Ship To Cape Canaveral For Upcoming Launch
Jan 08 2021
SatTV interviews SFL’s Dr. Robert E. Zee
Nov 24 2020
Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites
Nov 16 2020
GHGSat Reports Smallest Methane Emission Ever Detected from Space with Microsatellite Developed by Space Flight Laboratory (SFL)
Oct 22 2020
Space Flight Laboratory (SFL) Announces Launch of Two Satellites
Oct 08 2020
Space Flight Laboratory Announces Launch of Atmospheric Monitoring and Earth Observation Microsatellites
Sep 04 2020
Blog - Disruptive vs Operational Mission Strategies
Aug 12 2020
Blog - Join SFL at the Virtual SmallSat 2020
Jul 31 2020
Blog - SFL Serving Both NewSpace and MicroSpace Missions
Jul 29 2020
Blog - AISSat-1 Maritime Vessel Tracking Nanosat Celebrates 10th Anniversary
Jul 22 2020
HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER
Jul 17 2020
Blog - SFL Comprehensive Microspace Mission Development Includes Ground Segment
Jul 06 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 2
Jun 01 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 1
May 22 2020
Blog - What’s Under Development at SFL? Atmospheric Monitoring Missions
Apr 27 2020
Blog - What’s Under Development at SFL? Ship Tracking and Remote Sensing Missions
Mar 26 2020
Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
HawkEye 360 Awards Contract to Build Next-Generation Satellite Constellation to Achieve Rapid Revisit for Global Spectrum Awareness
Sep 18 2019
Space Flight Laboratory to Build HawkEye 360 Next-Gen Microsatellite Cluster for Commercial Radio Frequency Geolocation
Mar 27 2019
View All News Articles View All Blog Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.