Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites

TORONTO, Ontario, Canada, 16 November 2020 – Space Flight Laboratory (SFL), a developer of 52 distinct microspace missions, has been awarded a contract by GHGSat of Montreal to build the next three microsatellites in its commercial greenhouse gas monitoring constellation.

“SFL congratulates GHGSat on its success in providing commercial greenhouse gas monitoring services from space,” said SFL Director, Dr. Robert E. Zee. “This contract highlights GHGSat’s need to expand data collection capacity to meet the growing demand for its valuable services.”

Greenhouse gas emissions detected and measured by the satellites are processed into emission reports and other products by GHGSat on behalf of a broad range of customers, including energy facilities, government agencies, and environmental organizations.

SFL built the pathfinding GHGSat-D (Claire) microsatellite launched in 2016 and then was awarded the contract by GHGSat Inc. to develop the first two commercial service satellites, GHGSat-C1 (Iris) and C2 (Hugo). Iris was launched in September 2020, and Hugo is slated for launch late this year. These satellites were all developed on the SFL 15-kilogram Next-generation Earth Monitoring and Observation (NEMO) microsatellite platform, as will be the case for the next three.

“SFL has proven their technical expertise with our first two satellites. We are looking forward to this next phase of our partnership to support the growth of GHGSat’s constellation,” said Stephane Germain, CEO of GHGSat.

In just two months since its launch, GHGSat-C1 has achieved remarkable results detecting small methane emissions from point sources on the ground. In one test area, the satellite pinpointed five separate methane emissions, two of which were smaller than 220 kg/hr, a notable performance improvement on GHGSat’s demonstration satellite (Claire).

GHGSat-C1’s ability to detect and measure small point sources of greenhouse gas emissions is due in part to the precise attitude control and target tracking capability of the SFL NEMO bus. Rare among satellite platforms of this size and relatively low cost, precise pointing of the onboard sensor is made possible by an accurate and stable platform – an important factor in SFL’s selection to build the GHGSat microsatellites.

“We have a very mature, well-developed, and high-performance attitude control system that can handle various maneuvers and pointing modes with relative ease,” said Zee. “We fine-tuned the attitude control required for GHGSat-C1 by leveraging the results from the GHGSat-D demonstration mission, and we will make continued advancements in the next GHGSat constellation.”

Established at the University of Toronto Institute for Aerospace Studies (UTIAS) in 1998, SFL has developed CubeSats, nanosatellites, and microsatellites that have achieved more than 128 cumulative years of operation in orbit. These microspace missions have included SFL’s trusted attitude control and, in some cases, formation-flying capabilities. Other core SFL-developed components include modular (scalable) power systems, onboard radios, flight computers, and control software.

SFL’s heritage of on-orbit successes includes missions related to Earth observation, atmospheric monitoring, ship tracking and communication, radio frequency signal geolocation, technology demonstration, space astronomy, solar physics, space plasma, and other scientific research.

About Space Flight Laboratory (www.utias-sfl.net)
SFL generates bigger returns from smaller, lower cost satellites. Small satellites built by SFL consistently push the performance envelope and disrupt the traditional cost paradigm. Satellites are built with advanced power systems, stringent attitude control and high-volume data capacity that are striking relative to the budget. SFL arranges launches globally and maintains a mission control center accessing ground stations worldwide. The pioneering and barrier-breaking work of SFL is a key enabler to tomorrow’s cost aggressive satellite constellations. (www.utias-sfl.net)

GHGSat-C1

GHGSat-C1 (Iris) launched in September 2020.

About GHGSat (www.ghgsat.com)
GHGSat uses its own satellites and aircraft sensors to measure greenhouse gas emissions directly from industrial sites; providing actionable insights to businesses, governments, and regulators. With proprietary remote-sensing and patented technology, GHGSat enables strategic decision making through monitoring and analytics services, with better accuracy, more frequently and at a fraction of the cost of other technologies. (www.ghgsat.com)

Dr. Robert E. Zee
SFL Director
1-416-667-7400
info@utias-sfl.net
Follow SFL on Twitter @SFL_SmallerSats

LATEST NEWS & BLOGS

Three HawkEye 360 Formation-Flying Microsatellites Built By Space Flight Laboratory (SFL) Successfully Launched
Jul 01 2021
NASA Selects Space Flight Laboratory (SFL) for StarBurst SmallSat Mission
Jun 28 2021
Why Small Satellites and the ‘Microspace’ Approach are Keys to Developing a National Earth Observation Program
Jun 03 2021
Norwegian Space Agency Announces Launch of NorSat-3 Maritime Tracking Microsatellite Built by Space Flight Laboratory (SFL)
Apr 29 2021
Microspace Technology Enables All Countries to Reap the Benefits of National Earth Observation Programs
Apr 16 2021
Dubai Municipality Announces Launch of DMSat-1 Atmospheric Monitoring Microsatellite Built by Space Flight Laboratory (SFL)
Mar 22 2021
Dubai Municipality and MBRSC to launch region’s first environmental nanometric satellite on March 20
Mar 11 2021
Blog - Quality is Not Synonymous with Standards
Mar 03 2021
GHGSat-C2 Captures First Methane Plume a Week After Launch
Feb 20 2021
Norway Selects Space Flight Laboratory (SFL) to Develop Technology Demonstrator Microsatellite
Feb 16 2021
Slovenia Releases Color Image from NEMO-HD Microsatellite Built by Space Flight Laboratory (SFL) in Collaboration with SPACE-SI
Feb 08 2021
Space Flight Laboratory (SFL) Announces Successful Launch of 12 Satellites on SpaceX Ride-Sharing Mission
Jan 26 2021
Blog-Systems Engineering vs the CubeSat Kit
Jan 11 2021
HawkEye 360’s Cluster 2 Smallsats Ship To Cape Canaveral For Upcoming Launch
Jan 08 2021
SatTV interviews SFL’s Dr. Robert E. Zee
Nov 24 2020
Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites
Nov 16 2020
GHGSat Reports Smallest Methane Emission Ever Detected from Space with Microsatellite Developed by Space Flight Laboratory (SFL)
Oct 22 2020
Space Flight Laboratory (SFL) Announces Launch of Two Satellites
Oct 08 2020
Space Flight Laboratory Announces Launch of Atmospheric Monitoring and Earth Observation Microsatellites
Sep 04 2020
Blog - Disruptive vs Operational Mission Strategies
Aug 12 2020
Blog - Join SFL at the Virtual SmallSat 2020
Jul 31 2020
Blog - SFL Serving Both NewSpace and MicroSpace Missions
Jul 29 2020
Blog - AISSat-1 Maritime Vessel Tracking Nanosat Celebrates 10th Anniversary
Jul 22 2020
HAWKEYE 360 COMPLETES MILESTONE IN PREPARATION TO LAUNCH SECOND CLUSTER
Jul 17 2020
Blog - SFL Comprehensive Microspace Mission Development Includes Ground Segment
Jul 06 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 2
Jun 01 2020
Blog - Autonomous Formation Flying Enables Multi-Satellite Applications – Part 1
May 22 2020
Blog - What’s Under Development at SFL? Atmospheric Monitoring Missions
Apr 27 2020
Blog - What’s Under Development at SFL? Ship Tracking and Remote Sensing Missions
Mar 26 2020
Blog - SFL and Kepler Collaboration Featured on SatTV News
Feb 14 2020
Space Flight Laboratory and Kepler Communications Announce Collaboration on Fully Operational Nanosatellite Constellation
Feb 03 2020
Blog - What’s Under Development at SFL? Commercial GHGSat and HE360 Missions
Jan 13 2020
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 2
Dec 16 2019
Blog - Attitude Control Crucial for Practical Applications of Small Satellites – Part 1
Dec 09 2019
Blog - Do Microspace Companies Have a Role in the NewSpace Era?
Nov 15 2019
HawkEye 360 Awards Contract to Build Next-Generation Satellite Constellation to Achieve Rapid Revisit for Global Spectrum Awareness
Sep 18 2019
Space Flight Laboratory to Build HawkEye 360 Next-Gen Microsatellite Cluster for Commercial Radio Frequency Geolocation
Mar 27 2019
Canada Awards Contracts In Support of Arctic Surveillance
Feb 01 2019
Arianespace to Launch Slovenian NEMO-HD Microsatellite
Dec 03 2018
HawkEye 360 Announces Successful Launch of First Three Satellites Built by SFL Under Contract to DSI
Dec 03 2018
A New Star in the Sky
Nov 20 2018
GHGSat selects Arianespace to launch GHGSat-C1 on Vega
Nov 15 2018
UTIAS-SFL Students Win Significant Awards for their Technical Papers
Aug 14 2018
SFL-Led Nanosatellite Team Receives Canadian Alouette Award for Precise Autonomous Formation Flight
May 17 2018
NorSat-3 Ordered by Norwegian Space Centre, Satellite Under Construction at SFL
Jan 10 2018
Norwegian AIS Satellites See Far More Ships
Jan 10 2018
BRITE Reveals Spots on Supergiant Star Drive Spirals in Stellar Wind
Oct 24 2017
CLARA on NorSat-1 Successfully Switched on for the First Time
Aug 25 2017
Norwegian Satellites Launched Successfully and Healthy
Jul 14 2017
GHGSat Unveils Satellite Imagery
May 23 2017
View All News Articles View All Blog Articles
© 2014 University of Toronto Institute for Aerospace Studies Space Flight Lab. All rights reserved.